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MSW Transducers

1. INTRODUCTION

This report describes research on magnetostatic wave transducers performed at RADC over the
past several years. Using the theory presented here, terminal characteristics of MSW delay lines,
made up of a pair of transducers and a ferrite delay medium can be computed for cases of practical
interest. Insertion loss, phase, time delay, and input impedance versus frequency may be computed.
Input parameters are: magnetic biasing field, transducer geometry, YIG parameters and geometry, and
ground plane spacing. The theory accurately predicts the behavior of wide band single element MSW
transducers on YIG, and the behavior of multielement transducers weakly coupled to the YIG when
individual transducer elements are narrow compared to interelement spacing and when maximum
transducer dimensions are small compared to electromagnetic wavelengths. Under identical
conditions a transducer apodization equation is developed.

Nine chapters and five appendices make up the report. A table of contents is useful in locating
specific topics. Organization of the report is as follows: Gyromagnetic wave propagation basics,
transducer geometries, and MSW delay line fabrication are discussed in Chapter 1. MSW analysis,
starting with Maxwell's equations coupled with the Gyromagnetic equation, is developed in Chapter 2,
to the point where transducer radiation resistance, reactance and delay line insertion loss are
determined. Chapter 3 provides a description of MSW computer programs and procedures {or using
them. Examples of computer generated data, in the form of plots, are provided in Chapter 4. A
description of MSW experiments and their results, performed at RADC/EEA, are given in Chapter 5.
Chapter 6 discusses specialized topics that may be useful for further improvement of transducer

{Received for publication 13 December 1988)




models, and a new generalized model thatl adapts (o any stripline waveguide. Chapler 7 provides a
description and evalnation ol all MSW related publications produced by EEA. Chapter 8 is a detailed
analysis of the back reaction of nonreciprocal magnetostatic surface waves onto the current which
generated them. Chapter 9 provides a short discussion.

Appendix A provides a reasonably complete list of publications related to the work of this report.
Appendixes BB and E provide analytical details related to current distribution and a combined TT/TL
model, respectively. A list of symbols and notation is provided in Appendix C. Appendix D describes a
protolype band pass [ilter fabricated at RADC/EEA that has not been previously published.

1.1 Propagating MSW Modes

Figure 1-1 shows the three basic pure propagating magnetostatic wave modes in a magnetic film
of yttrinm iron garnet, or in other low loss ferrites. At the present time virtually all MSW devices are
characterized without regard to magnetocrystalline anisotropy because this effect is small. On the
other Liand, magnetic anisotropy due to the presence ol a DC magnetic basing field is large and cannot
be neglected. This bias field induced anisotropy gives rise to the three distinct propagating modes.
They are known as MSSW, MSBVW and MSFVW, for magnetostatic surface waves, backward volume
waves, and forward volume waves, respectively.

With present devices, MSWs typically propagate on the order of fifty wavelengths before losing
an appreciable amount of energy through scatiering and beam spreading. These waves, or modes, are
potentially useful for analog signal processing directly at microwave frequencies, and for tunable
nanoscecond delay lines.

A physical mechanism for propagating MSW modes is the energy transfer between neighboring
magnetic dipoles. Minimum loss occurs when the magnetic medium is magnetically saturated; all
magnetic domains are removed leaving one large domain with all dipoles having the same amplitude
and orientation. When waves are present, the dipoles coherently waver with varying orientation.

Magnetostatic waves can be viewed as ordinary electromagnetic waves propagating in a
ferrimagnetic medium with most of the energy carried by the magnetic field component of the EM
wave. Ferromagnets, on the other hand, have large conducting losses, and consequently are not used
for MSW. The waves are slow, about three orders of magnitude slower than light. Although the electric
ficld can be neglected when calculating magnetic field, using the magnetostatic approximation curl
H = 0; the electric field cannot be neglected when calculating power flow because Poynting's vector,

E » H. may be large. The RF magnetic field may be calculated from Maxwell's equations along with the
gyvromagnetic equation which characterizes the magnetic medium. RF magnetic fields are found from
the gradient of a scalar potential, y. Then, the associated RF electric field follows from the calculated
magnetic ficld. These {wo calculated RF field components, E and H, define the Poynting vector. This is
the essenee of slow magnetically dominated electromagnetic waves. Unfortunately, they have not
been given a useful descriptive name; and this leads to some confusion. They are not magnetostatic in
the usual sense of the word: that is to say. non-propagating. Actually, magnetic energy propagates in
well defined modes at a velocity midway between the velocity of acoustic waves in solids and
cleclromagnetic waves in space.
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Figure 1-1. Three Pure MSW Propagating Modes

1.2 RF Magnetization

Figure 1-1 also provides a good understanding of wave motion in ferrites. Here are depicted the
three pure propagating MSW modes. The basic feature distinguishing one mode from the other is the
orientation of the magnetic biasing field, H, and the direction of propagation relative to the film
normal. In all three cases, as depicted, energy propagation is from right to left. The magnetic biasing
field is spatially uniform and constant with time. The strength of this applied field is large enough to
saturate the magnetic medium; that is, all magnetic domains are removed. For YIG, the saturation
magnetization at room temperature is about 1760 gauss everywhere within the medium. In addition,
the vector M is exactly aligned with H when the magnetic system is undisturbed. When an RF magnetic
field is applied perpendicular to H, a precession of M takes place about H at frequency » and some
small angle 8. The transverse component of magnetization, my, rotates counter-clockwise when
viewed in the direction opposite to the orientation of H, as shown.

Consider, for example. the magnetostatic forward volume wave, MSFVW, shown in the center of
Figure 1-1. Here H is pointed in the positive y direction. When a wave is present, the magnitude of M is
unchanged but its orientation changes with wave motion. If we picture the group of circles depicted on
the YIG's top surface as moving to the left in the direction of propagation, then it may be seen that my
which traces out these circles, rotates in a CCW direction when viewed along the negative y direction,
at a fixed position in space. Components my and m,, are projections of m; onto the sides of the YIG
bars; and a wavelength is the distance between two circles along the propagation direction having
parallel my, as indicated in the figure. The other two modes behave in a similar manner.




The three modes depicted here are the only pure MSW modes that can exist in a ferrite slab. They
are pure in the sense that phase and group velocity vectors are colinear; either parallel or anti-
parallel. They are parallel for MSFVW and MSSW and anti-parallel for MSBVW. All other modes
have non-colinear phase and group velocity vectors. Actually, the three pure modes exist only in a
medium whose magnelocrystalline anisotropy is negligible. Magnetocrystalline anisotropy is
neglected in present day MSW devices. Moreover, low linewidth polycrystalline YIG, which has no
anisotropy. has successfully been used to demonstrate MSW device operation.! It may be possible to
propagate MSW over much longer distances than the present limit of about three centimeters, by
taking advantage of crystalline orientations that focus MSW. This is not presently done because it is
difficult to grow YIG films of high enough quality and large enough area in any plane other than the
(111) plane. In this plane magnetocrystalline anisotropy is weak.

As a further example of magnetization dynamics, refer to Figure 1-2a. Depicted here for an
MSSW is the movement of the RF magnetization component perpendicular to a DC magnetic field. The
RF component, my, is depicted by an arrow whose ip traces out an ellipse. The vector my rotates
counter-clockwise when the magnetic biasing field points out of the plane of the figure, as shown. The
energy propagation direction is given by H x i where 11 is a unit vector pointing upwards. This
elliptical motion resembles particle motion in a Rayleigh surface wave, SAW, hence the name
"Rayleigh type magnetic surface wave" is sometimes used. There is however, a subtle difference
between magnetic and acoustic surface wave dynamics, in addition to the obvious difference that one
is a wave of magnetization and the other a wave of physical displacement. A SAW can be supported by
a single solid/[ree space interface; an MSSW requires two interfaces such as in a thin film.

We can see why MSSWs require two surfaces to support them, by referring to Figure 1-2b and
Egs. (1) and (2). Figure 1-2b shows MSSW amplitude distribution throughout the thickness of the
propagation medium: Eq. {1) gives the MSSW amplitude ratio between top and bottom surfaces; and
Eq. (2) is the dispersion relation for MSSW on ferrite samples in free space. Note that as YIG
thickness, d. approaches zero, the ratio of surface amplitudes approaches unity: and when the
thickness approaches infinity, the amplitude ratio approaches zero. This means that energy density
is highly concentrated on one surface. However, as the thickness approaches infinity, MSSW
wavelength must also approach infinity in order to have a finite frequency [See Eq. (2)]. On the other
hand. when thickness approaches zero, MSSW wavelength also approaches zero for a finite frequency.
Thus, very thick films only support long wavelengths, and very thin films only support short
wavelengths. In the limit, d approaches infinity, wavelengths that satisfy the dispersion relation, but
are much larger than sample dimensions are not physically realizable. In the d approaches zero limit,
wavelengths of less than one micron are extremely lossy; and, so films less than one micron thick
may not be useful for MSW,

_ [coth(kd/2) - tanh(kd/2)}(1 + K)
Amplitude Ratio =y 47°3/9) + tanh(kd/2)](1 + K) = 2v+2 (1-1)

1. Zhang, X. and Lin, H. (1982) The present status of microwave ferrite materials and devices in
China, presented at the Third Joint Intermag/Magnetism and Magnetic Materials Conference.
Montreal, Canada, Paper EC-01.
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